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Oblique wave incidence on a plane beach:
the classical problem revisited
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(Received 4 August 1997 and in revised form 6 March 1998)

The non-hydrostatic description of three-dimensional waves incident over a plane
beach at a long straight coastline is considered in terms of the inverse Kontorovich–
Lebedev integral transform. This is seen as a natural extension to earlier work
by the author where the two-dimensional (normal incidence) flow is expressed as
an inverse Mellin transform, and similar simplifications in the description here are
encountered. In particular computations are undertaken for a variety of beach slopes
of the form α = π/2m where m is an integer and for a range of incidence angles.
These computations have previously only been practical for beaches whose slope α is
regarded as asymptotically small thereby allowing versions of the mild-slope equation
to be used. For the chosen slope angles, the solution is established with rigour and
methods of estimating near- and far-field asymptotics arise naturally in this discussion.
For the case of perfect reflection, a previously known solution is recovered in closed
form as a finite sum of exponential terms, and a shoreline ‘amplification factor’ aγ
is considered for these waves and is computed for a range of beach slopes through
the entire spectrum of incidence angles. It is shown analytically that, in the limit of
normal incidence, the value of aγ approaches the well-known classical result a0 = m1/2

and, for glancing incidence, Whitham’s (1979) result is confirmed where the value
approaches either 1 or 0 depending on whether the beach angle is or is not an angle
at which a new Ursell edge wave mode appears (m odd).

As applications of the new development, comprehensive near-field expansions
for arbitrary reflection are written and verified by computation. These permit the
construction of refracted wavefronts and wave rays for arbitrary beach slope without
the usual phase velocity assumptions. Instability is indicated at very oblique incidence
where nonlinear modelling (Peregrine & Ryrie 1983) predicts ‘anomalous refraction’.
Results are presented graphically and computation of derivatives of the potential
enables estimation of the (second order) set-down seaward of the breaker zone. This
is found to decrease as wave attack becomes increasingly oblique.

1. Introduction
The classical problem of waves attacking obliquely a long straight coastline where

the beach is plane and of arbitrary declination α has been previously described in
great detail by many authors. The justification for revisiting the problem rests largely
with the comparative computational ‘inaccessibility’ of the solutions. Hanson (1926),
Peters (1952) and Roseau (1952) are some of the early works on small-amplitude
waves on a perfect fluid in irrotational motion (Hanson’s work was restricted to the
bounded standing wave). These works are specific to the ‘continuous spectrum’ case
(oscillatory structure in the off-shore direction) whilst the ‘discrete spectrum case’,
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where waves propagate along the shore, was first fully investigated by Ursell (1952)
and later by Roseau (1958). This case leads to the well-known edge waves which
have been subsequently studied by many other authors, e.g. Minzoni & Whitham
(1977) who discussed the nonlinear excitation of edge waves by continuous spectrum
standing waves, Evans (1988, 1989) who, using a linear framework, discussed first
the generation of waves by bottom protrusions or surface pressure distributions and
later the general bounded edge wave solutions under a generalized (Robin-type) bed
condition. More recently Miles (1990 a) and Blondeaux & Vittori (1995) also discussed
the nonlinear excitation of edge waves. A fuller discussion using techniques of the
present paper will, for the case of the discrete spectrum, be deferred to a later work,
but readers will find an excellent up-to-date survey on edge waves given by Evans &
Kuznetsov (1997) (see also Kuznetsov et al. 1998).

A succinct overview of Peters’ work is given by Stoker (1958) whilst a more recent
(but perhaps lesser known) work by Whitham (1979, Chap. 7) describes a similar
approach but contains a number of interesting additional ramifications; the reader
can refer to any of these works for the basic formulation which will be adopted here
in § 2. Whilst the derivation of the solution provided by Peters and (for the special
case of the slope angles considered herein) Whitham is one of considerable ingenuity,
the outcome is an extremely complicated form of solution and one which does not
lend itself to computation with any degree of simplicity except in the case of the
regular standing wave (see below). Indeed, it is noteworthy that whilst the classical
two-dimensional (normal incidence) solutions (Stoker 1958) are often cited and used
quantitatively by authors (e.g. Keller 1961; Blondeaux & Vittori 1995) there appears
to be little use made of the more general oblique incidence solutions discussed first
by Peters and Roseau and later by Lauwerier (1959). Paradoxically, the latter work
throws some light on this issue. On the one hand, Lauwerier is unable properly to
reconcile the new solution with that of Peters, but for the special case of the vertical
cliff at least the well-known solution of Weinstein (1949) is recovered. Lauwerier
also remarks that the new solution is obtained in a form which makes it perhaps
amenable to further treatment. The test of time has evidently not substantiated
this prophecy but this may be as much due to progress in computational models
in the last few decades as to any particular deficiency with Lauwerier’s solution.
Those computational models, however, need validating and (numerical) calibrating
(see for example Ehrenmark & Williams 1996 on the two-dimensional model) and
it is here that the classical analytical models may retain a fundamental importance.
The further quest for a solution which may be regarded as more amenable to
treatment than any of the previously known solutions therefore remains thoroughly
justified and one of the main objectives of the present paper is to establish, with
rigour, a new description of the solution and to follow this up with a demonstration
of its computational applicability by a series of calculations both from the full
solutions and from asymptotic estimates of it. In particular, a comprehensive near-
field expansion, which has not previously been written, is derived, computed and
compared with the full solution. In this way (with coding available from the author on
request) both computational modellers and those seeking more efficient mathematical
approximations (e.g. parabolic models) are provided with a further validation test for
three-dimensional wave propagation. This provision is in the form of a simple inverse
integral transform or a uniformly convergent series expansion which represent the
main results of the present work.

Whitham (1979, Chap. 7) exposes some of the restrictions of the classical models
(e.g. Peters 1952; Ursell 1952) although, curiously, no mention is made of the contri-
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butions of Roseau (1952, 1958). In his work, Whitham shows that both edge waves
and oblique waves are obtainable from the same model. This, along with many other
derivations, is consistent with the results of the present model. Symptomatic of the
various models, however, is the different degrees of difficulty in achieving specific
outcomes. Most noteworthy of these, perhaps, is the difficulty of establishing e.g. We-
instein’s solution (see § 6) from Peters’ and Whitham’s model compared to the present
model. On the other hand, the relationship, for example, between near- and far-field
asymptotic values seems to be more easily deduced by Whitham. These aspects are
discussed more fully in the text.

In earlier work e.g. Ehrenmark (1989) the author showed that, in the case of normal
incidence, the classical descriptions, e.g., Isaacsson (1950), Weinstein (1949), Stoker
(1947), were considerably simplified by deployment of the inverse Mellin transform as
an alternative solver. Indeed, more recently (Ehrenmark 1994, 1996) the author has
shown also that a second-order analysis is possible under this description and this
has been used to compute both set-down and second-order currents so driven, albeit
under the restriction of validity to beyond some small distance from the shoreline,
owing to assumptions of linearization and non-breaking waves. Such a theory (non-
breaking) can be expected to be more relevant for steeper beaches where the reflection
is probably considerable and where the conventional shallow-water theory becomes
largely inapplicable and is replaced by a non-hydrostatic theory. In order not to
compromise the mathematical generality of the solutions generated, the merits of
the logarithmically (shoreline) singular solution will not be discussed here, except to
record that whilst exclusion would render the solution bounded there, it would also
imply perfect reflection, which could only be anticipated a good approximation on
a beach of extreme steepness. An alternative viewpoint is to allow partial, or zero,
reflection and then recognize that, the model being frictionless, logarithmically large
shoreline values would in reality be damped out by friction and turbulent losses
following breaking. In this way, the theory could be expected to be adequate at least
seaward of the breaker zone or, for non-breaking waves, seaward of the dissipation
zone (Miles 1990 b; Ehrenmark 1996). Thus, along with the earlier treatments of this
problem, both the ‘regular’ and ‘singular’ wave components will be studied so that
arbitrary solutions can be constructed as required.

The purpose of the present work therefore, is to examine the oblique incidence
problem, similar to the two-dimensional treatment (Ehrenmark 1989), but in this
case handled by application of the inverse Kontorovich–Lebedev transform (K–L
hereafter). The general formulation of the problem is restated in § 2 and the K–L
ansatz is developed in § 3. This leads to a second-order functional equation whose
solutions, for the special slope angles α (= π/2q, q ∈ N ), are constructed in § 4. The
rigorous development of the initial solution is found to have shortcomings unless the
far-field behaviour is first subtracted out and this technique is used to establish a
proof of the solution (Appendix D). In § 5 the particular case of the perfectly reflected
wave is examined and it is shown, with some details deferred to an Appendix, that the
solution remains obtainable in closed form for arbitrary angle of incidence. This result
had been previously observed (see Roseau 1952) but surprisingly is not discussed by
either Peters or Stoker. Moreover, Bruce (1998) has shown that, starting from Peters’
(1952) solution, considerable labour is required to obtain the full details of this result
even for the simplest case of a beach of 45◦ slope. Roseau (1951, 1952) did write this
solution but obtained it in a fashion similar to that used by Weinstein (1949) for the
vertical cliff.

Sections 6 and 7 examine respectively the cases of progressing waves against
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a vertical cliff and on a beach. In the former case, it is shown that the special
solution derived by Weinstein (1949) is easily recovered and in the latter case the
solution is written in a form which, for vanishingly small incidence angles, is seen
to reduce precisely to the potential functions written by Stoker (1958, p. 84) for
the two-dimensional problem. It is believed that this form is preferable to some
earlier forms (e.g. Peters 1952 or Roseau 1952) and comprehensive calculations are
undertaken to demonstrate this. An expression is also written for amplification at
the shoreline of waves having essentially unit amplitude at infinity (being standing
waves, the notion of amplitude at infinity has to be taken to mean the maximum
possible amplitude). Computations are undertaken for varying angles of incidence γ
and excellent agreement is noted with the classical two-dimensional normal incidence
solution when γ is taken to be very small. It is established in Appendix C that the
expression for the amplification factor reduces, in this limit, to the classical form
noted by e.g. Friedrichs (1948), Keller (1961). This result is considered of special
interest as are also the extended calculations for glancing incidence which confirm
that, as γ → 1

2
π, the shoreline ‘amplitude’ approaches zero except for the special slope

angles 1
6
π, 1

10
π, 1

14
π, . . . which are precisely those angles at which new discrete modes

of the Ursell (1952) ‘edge waves’ appear when the frequency is regarded as fixed.
For these angles, the value unity is instead obtained for the shoreline amplitude. This
observation was first made by Whitham (1979) but without any specific computations.
Moreover, Whitham, whilst explaining the phenomenon in terms of phase shifts at
the shoreline causing alternately reinforcement and cancellation of wave components
there, remained puzzled by the strange behaviour, remarking on the fact that one
would not expect rapid changes in (potential) as the bed angle is gently decreased at
already small values. The present work does not throw any new light on this issue,
except to note that, at these angles, the waves are identical to the cut-off modes
that form part of Ursell’s edge wave description and that these modes will therefore
have the same amplitude at the shoreline as they do at infinity; an observation
which, evidently, has only therefore been indirectly observed previously. It is also
remarked that there may be a need to compute with accuracy the original solutions
presented by Peters which are valid for a continuous spectrum of bed-slope angles.
In this way, it may be possible to determine more accurately the manifestation in
general of the ‘odd’ behaviour. The prospect of doing this is a little daunting but
the present solution and related computations (having been thoroughly verified) will
provide the necessary validation tool for whatever numerical procedure is invoked in
the more general case. In connection with these observations as γ → 1

2
π, it may be

noted from Peregrine & Ryrie (1983) (see also Peregrine 1983 and Ryrie & Peregrine
1982) that the linear refraction theory appears to have a zero amplitude range of
applicability at 90◦ incidence. As discovered by Peregrine & Ryrie, using a nonlinear
finite-amplitude theory, anomalous refraction appears at glancing incidence and wave
rays will, in some circumstances, refract back toward more shore-parallel incidence.
The linear theory cannot of course account for the anomalous refraction but it may
be worth remarking that, for values of γ in excess of about 70◦, there appears (with
non-hydrostatic linear theory having replaced the more usual classical linear Airy
theory) a certain amount of instability in the calculated turning of the wave ray.
Some evidence of this can be seen in figure 6 (a, b). The Section is concluded by
summarizing one of the main results of the paper, namely the full expression for the
potential of an incoming progressing wave.

Near-field expansions are obtained by residues providing a method of approximat-
ing readily (in particular) the singular solution near the shoreline. These expansions,
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Figure 1. Geometry of the problem: (a) Plan view, (b) section view.

which have not previously been established, are given in § 8 and are augmented by a
graph to indicate the range of validity that can be expected depending on the number
of terms taken. Agreement with earlier results for shore normal incidence is demon-
strated by taking an extremely small incidence angle. The results are used to compute
a refraction diagram for 45◦ incidence on a beach of slope 6◦. Finally, in § 9, the ap-
plication to an expression for the wave-induced set-down seaward of the breaker zone
is considered (Longuet-Higgins & Stewart 1963). This is computed for a 30◦ beach
slope for a range of incidence angles. Some concluding remarks are made in § 10.

2. Formulation
The geometry is defined by the z-axis being taken along the shoreline, x directed

out to sea and y-taken vertically upwards with y = 0 as the (still water level) SWL. A
schematic diagram is given as figure 1. Monochromatic waves of angular frequency
ω and potential ‘amplitude’ a are then described in deep water by the potential

Φ∞ = aRe{φ∞ exp (iωt)},

where

φ∞ = exp {i(nx+ kz)}emy

and the angle of departure γ from normal incidence is given by cos γ = n/m, sin γ =
k/m. To satisfy the Laplace equation it is necessary to take

n2 + k2 = m2. (2.1)
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Peters (1952) looks for harmonic functions which have this behaviour at infinity
and which in addition satisfy the normal kinematic and dynamic conditions on
the surface, a condition of no normal flow on the bed together with a suitable
boundedness condition at the shoreline. It is unnecessary to dwell on the origin of
these conditions; all are well documented by Stoker (1958) and the system is written
explicitly but using instead cylindrical polar coordinates with θ = 0 as the SWL and
r = 0 as the shoreline. Thus the shore normal coordinate is r cos θ. It is convenient
to use non-dimensional variables based on the angular frequency ω and wavelength
at infinity 2π/m, m = ω2/g. The new (2DHV) radial coordinate is R = rω2/g. The
dimensional variables are also non-dimensionalized using off-shore wavenumber and
phase speed. Writing Φ = aRe{φ(R, θ) exp (it)eikz}, where g2Φ/ω3 is the dimensioned
potential, the system for the dimensionless potential function φ may be taken in the
form

(∆− κ2)φ = 0; {0 < R < ∞,−α < θ < 0}, (2.2)

φθ(R,−α) = 0; {0 < R < ∞}, (2.3)

φθ(R, 0) = Rφ(R, 0); {0 < R < ∞}, (2.4)

lim
R→∞
{φ− φ∞} = 0; {−α < θ < 0}, (2.5)

lim
R→0
{φ/lnR} = −λ; {λ constant}. (2.6)

In the above κ = k/m, the suffix θ denotes a partial derivative and it is understood
that the Laplacian is also dimensionless.

3. Construction of a solution
A formal solution of (2.2) which satisfies (2.3) is

φ(R, θ) = λK0(κR) +

∫ ∞
0

A(s) cosh s(θ + α)Kis(κR) ds, (3.1)

where Kν is Macdonald’s function (Watson 1944) and λ is a suitable constant which
will later be chosen so that condition (2.4) is satisfied. Then using the inversion
formula for K–L (Oberhettinger 1972, p. 241) it follows, again purely formally, that

A(s) cosh s(θ + α) =
2s

π2
sinh πs

∫ ∞
0

{φ(R, θ)− λK0(κR)} Kis(κR)

R
dR. (3.2)

The precise ansatz used in (3.1) has been chosen with hindsight from study of the
equivalent two-dimensional problem and a desire to retain as simple as possible a
description in the interests of applicability. The method adopted here will be first to
satisfy the surface condition (2.4) and then to examine the way in which the remaining
asymptotic conditions may be satisfied. To satisfy (2.4) the value of R−1φθ on the
SWL is first examined. Thus

R−1φθ|θ=0 =

∫ ∞
0

sA(s) sinh sαKis(κR)R−1 ds (3.3)

but noting the result §3.71 (1) in Watson (1944) and the fact that both Kis(·) and A(s)
are of even parity in s, the integral above is equal to

I =
−κ
2i

∫ +∞+i

−∞+i

A(s− i) sinh (s− i)αKis(κR) ds.
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Let S−δ denote the strip −1 6 Im(s) 6 0 with the disk |s+ i| < δ, 0 6 Arg (s+ i) 6 π
removed. Three conditions will now be assumed which can be examined a posteriori:

(C1) A(s) is regular in S−δ ;
(C2) A(s) is meromorphic and has a simple pole at s = −i (with residue denoted χ0);

(C3) LimX→∞
∫ 1

0
A(±X + iy − i) exp (αX)KiX−y(κR) dy → 0.

It can thus be deduced from Cauchy’s theorem that

I =
−κ
2i

PV

∫ +∞

−∞
A(s− i) sinh (s− i)αKis(κR) ds− iπκ sin α

2
χ0 K0(κR) (3.4)

where PV denotes the principal value. It is now required that{
A(s) cosh sα +

κ

i
A(s− i) sinh α(s− i)

}
= Λ(s), (3.5)

where Λ(s) is of odd parity. Replacing s by −s and using the even parity of A, Λ can
be eliminated from the pair of equations, leaving a single second-order functional
equation,

C(p+ 1)− 2µC(p) cot pα− C(p− 1) = 0, (3.6)

where

s = ip, C(p) = Ξ(p)A(ip) sin pα, Ξ(p+ 1) = Ξ(p), µ = κ−1(= cosec γ) > 1. (3.6a)

If A can be so constructed, it follows that (3.4) may be replaced by

I =
1

2

∫ +∞

−∞
A(s) cosh sαKis(κR) ds− iπκ sin α

2
χ0 K0(κR) (3.7)

having noted that the integral with Λ vanishes identically. It is now a straightforward
matter to select the value

λ = − 1
2
iπκ χ0 sin α (3.8)

to ensure that condition (2.4) is satisfied. It remains therefore to solve the functional
equation in such a way that the asymptotic conditions (2.5) and (2.6) are satisfied.
Note that the arbitrary 1-periodic function Ξ may be even or odd, thus both even
and odd solutions C will be required.

4. Solutions of functional equation
It is possible to apply a discrete Fourier transform in order to construct solutions

of (3.6) for a discrete spectrum of beach slope α. Thus posit

C(s) = ρs
∞∑

j=−∞

aj eisαj (4.1)

and substitute into (3.6), giving instead the general recurrence relation

aj−1

{
ρeiα(j−1) − 2iµ− 1

ρ
e−iα(j−1)

}
= aj+1

{
ρeiα(j+1) + 2iµ− 1

ρ
e−iα(j+1)

}
. (4.2)

A requirement of compact support for the coefficients leads to a−J−1 = aK+1 = 0,
J, K ∈ N . Then the term in the left-hand side brace on the of (4.2) must vanish, when
j = K and, vice versa the term in the right-hand-side brace when j = −J . This gives
the pair of equations

ρeiα(−J+1) + 2iµ− ρ−1e−iα(−J+1) = 0; ρeiα(K−1) − 2iµ− ρ−1e−iα(K−1) = 0
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so that, eliminating µ, it may be deduced that a solution for any incidence angle will
be possible in this form provided that either

(i) α = π(1 + 2N)/(J +K − 2), where J +K > 2, J, K,N ∈ N , or
(ii) ρ2 = eiα(J−K).

Case (ii) leads to edge waves so only case (i) is considered here. The compact support
must be symmetric, i.e. K = J , or else the finite form of the expansion must be
generalized in the case µ > 1. The roots ρ (for general N) are

ρ1,2 = (−1)Nµ± (µ2 − 1)1/2.

Then, purely for brevity, restrict attention to cases where N = 0. This gives
Stoker’s (1958) slope angles α = π/2M for integer M. Define, for convenience,
µ = cosh σ (σ real), so that upon writing also aj = c(j+J−1)/2, a ‘solution’ of the
recurrence relation may be expressed by

ck =
c0 cosh σ

cos (kα− iσ) cos kα

k∏
j=1

− cot jα cot (jα− iσ) (4.3)

it being understood that the cosines are ‘cancelled’ when k = J − 1 (= π/2α). A
solution for C(s) is given by

C(−is) = es(−iσ− 1
2 π)

J−1∑
j=0

cj e2jαs (4.4)

and a second solution could be given by replacing σ by −σ, or, more simply, by noting
that whenever C(s) is a solution of (3.6), then so is C(−s). In terms of the required
even parity of A(s) there follows, through the choice of the i-periodic function basis
Q: {1, coth πs}, the construction with arbitrary constants A, B,

A(s) = AA+(s) + BA−(s) coth πs,

where A+(s) and A−(s) are of respectively even and odd parity given by

A±(s) = [C(−is)∓ C(is)] /2 sinh sα. (4.5)

This will render A− a simple zero at s = 0. To see this note that, in view of the
construction (4.4), C will be finite at s = ±1 and from the equation (3.6) it follows
that any even solution C(−is) + C(is) must have a zero at s = 0 and the function
being even, this must be a double zero. Thus, with this choice, A(s) is integrable at
s = 0.

Therefore the general solution can be written

φ(R, θ) = λK0(κR) +

∫ ∞
0

{AA+(s) + BA−(s) coth πs} cosh s(θ + α)Kis(κR) ds (4.6)

and, by considering full-depth near- and far-field asymptotics, it is noted that the
particular asymptotic requirements (2.5) and (2.6) are now satisfied. The first of these
is dealt with by the observation that the term in the brace in (4.6) is regular at s = 0,
for this means that the integral may be replaced by

π

2i
PV

∫ ∞
−∞
{AA+(s) + BA−(s) coth πs} cosh s(θ + α) cosechπs I−is(κR) ds (4.7)
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which for small R is dominated by the residue arising from the simple pole at
s = 0. With I0 ≈ 1, that result follows on observing that λK0(κR) has a logarithmic
singularity as R → 0. A discussion of the full near-field asymptotics is deferred to § 8.

Far-field asymptotics will be determined by the behaviour of the integrand as
s→∞. Clearly,

A±(s) ∼ es(
1
2 π−α)

{
e−iσscJ−1 ∓ eiσsc0

}
. (4.8)

In view of the exact result∫ ∞
0

2 cosh s
(

1
2
π − α− iσ

)
cosh s(θ + α)Kis(κR) ds

= ∆(σ) ≡ π exp {−κR sin (α+ iσ) cos (θ + α)} cosh {κR cos (α+ iσ) sin (θ + α)}

(see e.g. Oberhettinger 1972 p. 245), it is now an easy matter to rewrite the asymptotics
for A+(s), A−(s) with exponentials replaced by hyperbolic functions. From (4.6) there
follows

φ(R, θ) ∼ {(A+ B)cJ−1}∆(σ)− {(A− B)c0}∆(−σ).

The discussion in Appendix A illustrates why the dominant behaviour occurs on
θ = 0, the solution decaying with R at least algebraically on rays θ = negative
constant. The result, from (4.6) with the term in the brace replaced by its surface
asymptotics, is therefore

2π−1φ(R, 0) ∼ e−iR(1−κ2)1/2 {(A+ B)cJ−1} − eiR(1−κ2)1/2 {(A− B)c0}

and standing or progressing waves can be constructed as required. For the incoming
progressing wave φ∞, choose A = −B = −1/πc0.

5. Perfectly reflected waves
It is well-known that, in the case of normal incidence, perfectly reflected waves,

finite at the shoreline, are expressible in closed form for the special slope angles
currently being considered. Writing βk = exp (iπ(k/M+ 1/2)), the expansion given by
Stoker (1958) is

φr = Re

{
M∑
k=1

ck exp (Reiθ βk)

}
, (5.1)

where (purely for this expression)

ck = exp

{
iπ

(
M + 1

4
− k

2

)} k−1∏
j=1

cot

(
jπ

2M

)
, j > 1; c1 = c̄M.

This solution has been used extensively by other authors e.g. Keller (1961) inves-
tigating shoreline amplification, Blondeaux & Vittori (1995) studying the excitation
of edge waves and more recently by Ehrenmark & Williams (1996) examining the
efficiency of the mild-slope equation on a steep beach.

In the case of oblique wave attack, a perfectly reflected wave remains expressible
in closed form. This observation appears to be less well-known and has gone largely
unnoticed in some earlier descriptions of the classical problem (e.g. Peters 1952;
Lauwerier 1959) although, of course, Ursell (1952) noted that, for edge wave motion
under discrete frequencies, the solution which is finite at the origin is expressible as a
sum of exponentials. It was Roseau (1952) who earlier showed that a generalization
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Figure 2 (a–c). For caption see facing page.

to expansion (5.1), in the case of Stoker’s slope angles, was possible and later (1958)
that this type of expression for edge wave motion was also possible for a continuous
spectrum of frequencies but then only for special parameters.

Some details of the present discussion are deferred to Appendix B but it may be
noted here that the result depends only on showing that in (4.7) the expression for
A+ may be reduced to a hyperbolic polynomial in terms of s, so that exact K–L
inversion is possible.
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Figure 2. Potentials for oblique wave attack: (a–d) Regular wave: (a) 45◦ beach, (b) 18◦ beach, (c)
6◦ beach, (d) 2◦ beach; (e–f) Singular wave: (e) 6◦ beach, (f) 18◦ beach. Full line, incidence angle
1◦; broken line, incidence angle 21◦; dashed line, incidence angle 41◦; dotted line, incidence angle
61◦.

The result, from Appendix B, is

{A+, A−} = 2

J−1∑
r=1

dr {cosh, −sinh } s
(

1
2
π − (2r − 1)α+ iσ

)
, (5.2)

where dr =
∑J−1

j=r cj . This facilitates the K–L inversion, with the result that the
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potential φ+ of the solution which is finite at the origin may be written

φ+ = 2

J−1∑
r=1

dr

∫ ∞
0

Kis(κR) cosh s(θ + α) cosh s
(

1
2
π − (2r − 1)α+ iσ

)
ds

= 1
2
π

J−1∑
r=1

dr
{

e(−κR sin [(2r−1)α−iσ−(θ+α)]) + e(−κR sin [(2r−1)α−iσ+(θ+α)])
}
. (5.3)

Similarly a fundamental solution φ− which has the logarithmic singularity at the
origin may be given by

iφ− = λK0(κR)− 2

J−1∑
r=1

dr

∫ ∞
0

Kis(κR) coth πs cosh s(θ+α) sinh s
(

1
2
π− (2r−1)α+ iσ

)
ds

= λK0(κR)− 2

J−1∑
r=1

dr

∫ ∞
0

Kis(κR) sinh s(θ + α) sinh s
(

1
2
π − (2r − 1)α+ iσ

)
ds

−2

J−1∑
r=1

dr

∫ ∞
0

Kis(κR)
cosh s(π − θ − α) sinh s

(
1
2
π − (2r − 1)α+ iσ

)
sinh πs

ds. (5.4)

As an example, for the 45◦ beach, J = 3 and we get, from (5.3) the well-known result

φ+ = ey(T cos Tx− sin Tx) + e−x(T cos Ty + sin Ty),

where (x, y) = R(cos θ, sin θ), T = tanh σ. The special case α = 1
6
π (J = 4) has also

been written in Appendix B.

It is remarked that the similarity in structure between (5.3) and the result of Roseau
(1952) for the same problem conceals the effort required to bring these two solutions
together in the general case. A wave of unit amplitude at infinity can always be
obtained by appropriate choice of one of the constants ck . Results of computing φ+

and φ− (which are both real valued) are displayed in figure 2 for a range of beach
slopes and incidence angles.

6. Progressing waves against a vertical cliff

The case α = 1
2
π is examined explicitly. For this case, N = 0, J = K = 2 and hence

a−1 = a1. With arbitrary reflection at the shoreline there follows

A(s) = A cos σs+ B sin σs coth sπ. (6.1)

This problem was originally solved by Weinstein (1949) but for convenience it is
remarked that a full exposition of the method of solution (which is different from
that of Peters (1952) for the more general problem) is given by Stoker (1958). It is
shown here that this solution is easily recovered in the present description by using
(6.1) as the brace terms in (4.6). The part corresponding to A = 1, B = 0 gives the
standing wave

φ+ = 1
2
πeR sin θ cos [R (1− κ2)1/2 cos θ]
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whilst that corresponding to A = 0, B = 1 gives the other standing wave

φ− = 1
2
πeR sin θ sin [R (1− κ2)1/2 cos θ]− iπκ

2
χ0K0(κR)

+

∫ ∞
0

cosh s( 1
2
π − θ) sin σsKis(κR)

sinh (πs)
ds.

In this, χ0 is the residue at s = −i of sin σs coth sπ. Then if θ = 0 there follows

φ2(R, 0) = 1
2
π sin [R (1− κ2)1/2 − (1− κ2)1/2

2
K0(κR) +

1

2

∫ ∞
0

sin σsKis(κR)

sinh
(
πs/2

) ds.

On noting the exact result (see Oberhettinger, 1972 p. 245)∫ ∞
0

sin σsKis(κR) ds

sinh
(
πs/2

) = sinh σ

∫ ∞
0

exp (−t cosh σ)K0[(κ
2R2 + t2)1/2] dt

and replacing the Macdonald functions by Hankel functions, Weinstein’s solution (as
given by Stoker) is recovered to within a multiplicative constant.

7. Progressing waves attacking a beach
The general case: α = π/2M is examined. For φ+ in closed form the alternative

partitioning

φ+ = 1
2
π
{
d1e

κR sin (θ+iσ) + dJ−1e
κR sin (θ−iσ)

}
+ 1

2
π

J−2∑
r=1

e−R sin (2rα−θ)
{
dr+1e

iR tanh σ cos (2rα−θ) + dJ−1−re
−iR tanh σ cos (2rα−θ)

}
(7.1)

exposes the dominant asymptotic terms as R → ∞ in the first brace. Note from
(4.3) that |cJ−1| = |c0| so that (with Arg c0 arbitrary) taking cJ−1 = −c̄0 (where the
bar denotes a complex conjugate) there follows dr = d̄J−r and hence the alternative
expression

φ+ = πRe

[
J−1∑
r=1

dJ−re
−κR sin (2(r−1)α−θ+iσ)

]
.

Similarly, (5.4) can be simplified by inverting the first of the summations to yield

iφ− = λK0(κR)− iπ Im

[
J−1∑
r=1

dJ−re
−κR sin (2(r−1)α−θ+iσ)

]

−2

J−1∑
r=1

dr

∫ ∞
0

Kis(κR)
cosh s(π − θ − α) sinh s

(
1
2
π − (2r − 1)α+ iσ

)
sinh πs

ds, (7.2)

where λ is given by λ = κ sin α
∑J−1

r=1 dr cos ((2r−1)α− iσ). It is now a straightforward
matter to construct waves of arbitrary phase using suitable combinations of the
fundamental basis {φ+ , φ−}. The asymptotic form at infinity stems from the r = 1
term in the first of the sums whilst the integrals in (7.2) converge at least like
exp (−2αs) on the surface and are easily computed following the methods described
by Ehrenmark (1995). Note that d1 = dJ−1 = cJ−1. The incoming progressing wave
ΦP is therefore constructed by the combination φ+ − iφ− giving

ΦP = Re {[φ+ − iφ−] exp [−i(t+ κz)]} (7.3)
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as the wave which has the asymptotic behaviour π |cJ−1| cos
{
t+ κz +R(1− κ2)1/2 −

Arg (cJ−1)
}

. To identify Arg (cJ−1), note that, setting Arg (c0) = β, it follows that
Arg (cJ−1) = π − β and hence that

Arg

(
cJ−1

c0

)
=

J−1∑
j=1

Arg

{
cos (2jα+ iσ)− cos (iσ)

− cos (2jα− iσ) + cos (iσ)

}
= π − 2β,

where β = πJ/2 −
∑J−1

j=1 tan−1 (tanh σ cot jα). One of the main aims is to write the
full solution in such a way that Stoker’s (1958) potential functions are recovered in
the limit σ → ∞. To this end, it is noted that β → π(J + 2)/4 in this limit. Thus
Arg (cJ−1)→ π(2− J)/4 from which the limiting asymptotic form of φ+ is seen to be

lim
σ→∞

φ+ = π |cJ−1| cos (R + π(n− 1)/4)),

where n = J−1, thus in exact agreement with Stoker (1958, p. 84) since the amplitude
to be assigned is arbitrary.

Corollary. Assume, for the moment that J = 2N + 1. If the amplitude of φ+ is
set to unity at infinity, then the shoreline amplitude φ+(0) is given by

φ+(0) =

2N∑
k=1

dk =

N−1∑
k=0

(N − k)(c2N−k − ck) = 2 Re

N−1∑
k=0

(N − k)c2N−k = 2Re

N∑
k=1

kcN+k

since
∑2N

j=0 cj = 0 and ck = −c2N−k .

Consider the limiting form of this as σ →∞. Under this limit, (4.3) can be written

cN+k =
c0 e−i(N+k)α

cos (N + k)α

N+k∏
j=1

e−iπ/2 cot jα =
c0 e−i(N+k)(α+

1
2
π)

cos (N − k)α

N−k∏
j=1

cot jα

from which, noting that (N + k)(α+ 1
2
π)−Arg (c0) = 1

2
π − k(α+ 1

2
π), there follows

lim
σ→∞

φ+(0) = 2

N∑
k=1

k
sin k(α+ 1

2
π)

cos (N − k)α

N−k∏
j=1

cot jα

taking the product as unity when k = N. It is shown in Appendix C that this
expression is equivalent to (2N)1/2. Moreover, it is well-known in the two-dimensional
problem (see e.g. Keller 1961), that the shoreline amplification factor is equal to
this value. In the case of perfectly reflected waves under oblique incidence we can
see from the definition of Φ (§ 2) that motion is progressing in the longshore (z)
direction with a wavenumber proportional to the sine of the angle of incidence γ.
Local amplification factors will therefore vary from 0 to a bed-slope and incidence-
angle-dependent maximum, the value at any time depending on the phase of the
longshore wave motion. However, this maximum is readily seen to be φ+(0). The idea
is illustrated here for the case J = 2N + 1; the case J = 2N may be similarly treated.

Shown, in figure 3, are curves for the shoreline amplification, for various beaches,
plotted as a function of incidence angle. It is noted that, for certain slopes, this value
approaches 1 as the incidence is gradually made more glancing. These are the ‘critical
slopes’ (α = π/(4n+ 2), n ∈ N ) at which new modes of the Ursell (1952) edge waves
appear; the so-called cut-off modes. These modes therefore have the same amplitude
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Figure 3. Maximum shoreline amplification factor as a function of incidence angle. Full line, beach
slope 45◦; broken line, beach slope 30◦; dashed line, beach slope 18◦; dotted line, beach slope 15◦;
finely dotted line, beach slope 6◦.

at infinity as at the shoreline. For the set (α = π/4n, n ∈ N ) the limiting value is
instead zero, which observation Whitham (1979) explained by noting that ‘incoming’
and ‘reflected’ waves are exactly out of phase with Arg

(
cJ−1/c0

)
= π(1− J) as σ → 0

from the above relation. In § 4 the possibility was noted of solving (4.2) under the
alternative assumption ρ2 = eiα(J−K). This will yield the edge waves discussed very
fully by Ursell (1952) and, albeit with a slightly different ansatz, by Roseau (1958).
It may be noted, in passing, that the present description (like that of Whitham
1979) is sufficiently general to include these waves. The more (shoreline) algebraically
unbounded ‘further’ solutions discussed by Roseau (1958) are not described here
however.

The section is completed by summarizing a full form of an incoming progress-
ing wave at angle of incidence γ(=sin−1 κ). By writing ς = t + κz, and Z =
1/ |cJ−1|

∑J−1
r=1 dJ−re

−κR sin (2(r−1)α−θ+iσ) , the potential (taken to be of unit amplitude
at infinity) may be written

ΦP = Re[Zeiς]+i sin ς

{
λK0(κR)− 2

J−1∑
r=1

dr

∫ ∞
0

Kis(κR)
cosh s(π − θ − α) sinh sϑr

sinh πs
ds

}
,

(7.4)

where

cosh σ = κ−1, λ = κ sin α

J−1∑
r=1

dr sin ϑr, ϑr ≡ 1
2
π − (2r − 1)α+ iσ, dr =

J−1∑
j=r

cj ,

and the constants ck satisfy

ck =
−c0 cosh σ

sin (kα− iσ) sin kα

k−1∏
j=1

−cot jα cot (jα− iσ),

J−1∑
j=0

cj = 0, ck = −c̄J−1−k.
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8. Near-field expansion
One of the specific shortcomings of previous models has been a lack of detail of the

solution in the nearfield. None of the authors Peters (1952), Roseau (1952), Lauwerier
(1959) or Whitham (1979) add to the observation that one of the fundamental
components has a logarithmic singularity at R = 0. However, the usefulness of a full
expansion has been demonstrated by the present author (1996) and by Ehrenmark &
Williams (1996) who examined the characteristic behaviour of a mild-slope equation
by direct comparison with such an expansion.

The simplest way to obtain a near-field expansion is to rewrite the solution integral
with the modified Bessel function as argument and to use the residue theorem in the
upper half-plane. This procedure has been described elsewhere in this work and, with
the help of the asymptotics in Appendix A to verify the procedure, it is relatively
straightforward. To do this, write φ− from the expressions (5.3), (5.4) in the form

iφ− = λK0(κR) + iπ

J−1∑
r=1

dr PV

∫ ∞
−∞

sinh sϑr coth πs cosh s(θ + α) cosechπs I−is(κR) ds.

The principal value integral contributes a ‘half’ residue at s = 0 and full residues at
the other poles in the upper half-plane. Writing

∑
res to denote these, there follows

iφ− = λK0(κR)

−
J−1∑
r=1

dr

{
ϑrI0(κR) + 2π2

∑
res

sinh sϑr coth πs cosh s(θ + α) cosechπs I−is(κR)

}
.

Note that remaining residues now arise from double poles and the resulting expansion
is

φ− =

J−1∑
r=1

dr φ
(r)
− ,

where

iφ(r)
− = λrK0(κR)−

∞∑
k=0

(−)kµk

{
[ϑr cos kϑr cos k(θ + α)

−(θ + α) sin kϑr sin k(θ + α)]Ik(κR) + sin kϑr cos k(θ + α)
∂Iν(κR)

∂ν
|ν=k
}
,

(8.1)

λr = κ sin α cos ((2r − 1)α − iσ) and µk = 1, if k = 0, = 2 if k > 0. Whilst the
convergence of the above series is uniform for all R, it is obvious (from the asymptotics
of the modified Bessel function for κR � 1) that practical calculation requires that
κR ≈ O(1).

A similar expression is easily written from (5.3) for φ+, namely

φ+ = −iπ

J−1∑
r=1

dr PV

∫ ∞
−∞

cosh sϑr cosh s(θ + α) cosechπs I−is(κR) ds

and the poles are now simple, giving the expansion

φ+ = π

J−1∑
r=1

dr

{
I0(κR) + 2

∞∑
k=1

(−)k cos kϑr cos k(θ + α)Ik(κR)

}
. (8.2)
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Figure 4. Numerical behaviour of near-field expansion of singular wave potential (from equation
(8.4)). Case of 6◦ beach with near-normal (1◦) wave incidence: Broken line A, 16 terms of expansion;
dotted line B, 32 terms of expansion; dashed line C, 72 terms of expansion; full line D, exact solution
from two-dimensional theory shown for R < 10.

Expanding the Cauchy products, a Taylor expansion of φ+ is easily written:

φ+ = π

∞∑
ρ=0

aρ(κR/2)ρ, (8.3)

where

aρ =

J−1∑
r=1

dr

[ρ/2]∑
j=0

1

j!

eρ−2j

(ρ− j)! ; ek = (−)kµk cos kϑr cos k(θ + α).

For the singular solution the Cauchy product treatment yields

iφ− = −log

(
κR

2

) ∞∑
ρ=0

Aρ

(
κR

2

)ρ
+

∞∑
ρ=0

Bρ

(
κR

2

)ρ
, (8.4)

where, after writing Θr(k) = ϑr cos kϑr cos k(θ+α)− (θ+α) sin kϑr sin k(θ+α), there
follows

Aρ =

J−1∑
r=1

dr

[ρ/2]∑
j=0

1

j!

e′ρ−2j

(ρ− j)! ,

Bρ =

J−1∑
r=1

dr

[ρ/2]∑
j=0

1

j!

{e′ρ−2j ψ(ρ− j + 1)− (−)ρµρ−2jΘr(ρ− 2j)}
(ρ− j)!

having set e′0 = λr; e
′
k = (−)kµk sin kϑr cos k(θ + α), k > 0. In the above, ψ is the

usual digamma function. The accuracy of the near-field expansion is seen in figure
4. Shown there, for φ− are the approximations obtained by respectively 16, 32 and
72 terms of the above series for a limiting small incidence angle (in this case γ = 1◦)
which can therefore be compared with the known exact solutions for two-dimensional
motion. With the curves coinciding, for modest values of R, it is not possible to see
there precisely the accuracy obtained. As an example it is therefore recorded that,
for the 6◦ beach singular potential at R = 1 the current expansion yields the value
0.976 88 9 for ‘almost two-dimensional incidence’ whereas Ehrenmark & Williams
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Figure 5. Refracted wave fronts for a progressing wave at 45◦ incidence on a beach of 6◦ slope.

(1996) noted 0.9769 from the evaluation of the solution integral for two-dimensional
incidence.

As a further demonstration of the solution, refracted wave fronts have been calcu-
lated for the case α = 6◦, with an incidence angle of 45◦. This involves the progressing
wave construction (7.3), tabulating φ+ and φ− (from the above expansions) and then
solving e.g. κz = tan−1 {(φ− − Tφ+)/(Tφ− + φ+)}, where T = tan ωt, for the wave
crests (see e.g. Krauss 1973 p. 145). A tabulation on R = [0.1(0.1)20] is obtained in a
matter of minutes on a desktop computer. The result is shown graphically in figure 5.
Readers interested in refraction may wish to compare this with the more approximate
conventional refraction diagram usually obtained by estimating phase velocities from
Airy theory and invoking a Fermat principle for wave rays. Note therefore, in figure
6 (a, b) the behaviour of refracted wave rays for increasingly oblique incidence. These
are computed from the wave ray vector, given through e.g. (7.3) by

k = ∇(tan−1 (φ−/φ+) + κz).

For the gentler 6◦ beach (figure 6 b) the arc CD shows the equivalent ‘Airy theory’
curve computed with the full expression for celerity ((g/k) tanh kh)1/2 whilst the arc AB
shows a computation using the ‘shallow water celerity (gh)1/2. The curves are started
from data at D and B respectively. The computation from (8.5) appears identical to
arc CD at this incidence of 60◦. Instability is evident from (depending on beach slope)
between 70◦ and 80◦ indicating a limitation of the theory. Peregrine & Ryrie (1983)
demonstrated, with a nonlinear model, the phenomenon of anomalous refraction at
the higher incidence angles and this appears to be consistent with instablility of
computed results in a linear model. The more basic Airy model does not display the
instability and it is possible that a fuller understanding of the asymptotics of both
bounded and unbounded edge waves may throw some light on the interpretation
of the instability in the present context. Note that some of the data (for 60◦ and
70◦ incidence) displayed by Peregrine & Ryrie (1983, figure 1) are extrapolated and
reproduced, for comparison, in figure 6 (b) from which it is clear that agreement
between linear and nonlinear models is better at the less oblique incidence angle.
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Figure 6. Refracted wave rays on a beach of slope (a) π/16 radians and (b) π/30 radians for
varying large angles of incidence. Part (b) also includes sample data from Peregrine & Ryrie (1983):
triangle, 60◦ incidence; square, 70◦ incidence. For ray at 60◦ incidence note: (i) Arc AB: shallow
water Airy theory result; (ii) Arc CD (thick line): full Airy theory result; (iii) Arc ED (partly hidden
line): present theory.

9. Set-down computations
As an application of the full theory, the computation of ‘set-down’ may be consid-

ered. This is the depression below SWL of the mean surface before wave breaking
which in turn induces ‘set-up’ (Longuet-Higgins & Stewart 1963). In a frictionless
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theory, the latter cannot be modelled, but the former is due to the shoaling effect
and the author has previously computed set-down (Ehrenmark 1994) in the nor-
mal incidence problem and found excellent agreement with the classical results of
Longuet-Higgins & Stewart (1963) which were valid only for gentle slopes. The reader
is referred to these works for a discussion of the physical assumptions. The funda-
mental expansions are taken in the usual form of asymptotic expansions in powers of
a small ordering parameter ε which is representative of wave slope at large distances:

{φ, η} = ε{φ1, η1}+ ε2{φ2, η2}+ . . . .

The expansion, to second order, of velocity potential and wave height then yields a
surface boundary condition which, when the mean over a wave period is taken, may
be written

〈η2〉+

〈
η1

∂2φ1

R∂t∂θ

〉
=
〈
− 1

2
(∇φ1)

2
〉

(see e.g. Blondeaux & Vittori 1995) where 〈a〉 denotes that mean of a and all
quantities are evaluated on the SWL θ = 0. From the surface conditions satisfied by
the first-order quantities, the expression may be simplified to

〈η2〉 = −1

2

〈(
∂φ1

∂R

)2

+

(
∂φ1

∂z

)2

− φ2
1

〉∣∣∣∣
θ=0

. (9.1)

The unreflected progressing wave is given by equation (7.3). It may be noted that
both φ+ and φ− are real valued (following the conjugacy conditions on the constants
dr), so that taking φ1 = ΦP ,

φ1 = φ+ cos (t+ κz) + φ− sin (t+ κz)

and hence

2

〈(
∂φ1

∂R

)2

+

(
∂φ1

∂z

)2

− φ2
1

〉∣∣∣∣
θ=0

=
(
φ′+
)2

+
(
φ′−
)2

+ (κ2 − 1){φ2
+ + φ2

−} (9.2)

where the prime denotes an R-derivative. Computation is easily accomplished by
differentiation of the series expansions given in § 8. This has been carried out for a
beach of slope 30◦ and the results are shown in figure 7 and may be compared with
the result developed by the author (1996) for normal incidence. Note, in particular,
that an observer moving shoreward encounters a region of set-up prior to the main
set-down. This is due to the trapped standing wave that is induced by the shoaling; the
deep-water asymptotics of the two principal components φ+ and φ− being somewhat
different. The square brackets in (7.1) and (7.2) denote the respective ‘Airy’ components
whose contribution to (9.2) will vanish when aggregated, in the same way that Airy
waves that ‘do not feel the bottom’ would have a zero set-down. The set-down due
to a standing wave cos x cos t is however a multiple of cos 2x (Krauss 1973) and
in this way, the residual component of (7.2) will effectively contribute an additional
standing wave albeit of seaward decreasing amplitude. The effect of this is therefore
to induce alternately set-down and set-up in a region sufficiently far from the shore.
This region migrates seaward as the beach slope decreases (see Ehrenmark 1994 for
a fuller discussion).
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Figure 7. Set-down calculations for a beach of slope 30◦ calculated from equation (9.1) for
varying angles of incidence.

10. Summary
A classical problem has been reviewed with the particular objective of obtaining

a simple formulation which is readily adapted for computation. This contrasts with
previous works where, with the exception of the case of the bounded perfectly
reflected wave, methods of accurate evaluation have not been considered. Shallow
beach calculations are generally made with some type of mild-slope approximation
but the present theory, being essentially non-hydrostatic, is applicable to beaches of
arbitrary slope and in particular may be of interest to sea-defence modellers or those
working with flow over steep shingle beaches. One way the present model may be
exploited is in the accurate assessment and calibration of the wave kinematic ‘black
box’ used as an element in the computational flow chart by modellers working over
variable topography. The validity of mild-slope approximations can be squeezed to
extraordinary slopes (e.g. Booij 1983; Ehrenmark & Williams 1996) and the latter
work has shown, in two dimensions, how modification of wave and phase velocities
can further improve the performance of the approximated system even on a beach of
slope 45◦. This is done by comparison with the more ‘exact’ non-hydrostatic classical
solution. The opportunity now exists for similar ‘tuning’ in a three-dimensional
environment and those interested in testing and refining parabolic models of wave
transformation should find the calculations herein of some value.

The refraction diagram and the set-down computations confirm that the present
model works well outside the breaker zone. However, even in the case of non-
breaking waves, there remains the difficulty of the logarithmically infinite values of
potential at the shoreline. In reality this energy ‘sink’ is spread out through the
dissipation zone – whether by viscous forces, bottom friction or by breaking events
– but its effect in the far field remains the same, namely that the reflected wave
is only of limited importance. Earlier work by the author in two-dimensions (1991)
showed that (eddy) viscosity treatment is possible and in this way bounded solutions
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representing progressing waves in the far field may be constructed. The joining of the
near- and far-field approximations currently needs to be done heuristically however,
and a desirable aim would be a more systematic approach to finding a uniformly
valid viscous solution. If this can be done there should be no reason why a similar
approach cannot be made in the three-dimensional case using the present formulation
as the basic solution. Moreover, it was shown in Ehrenmark (1991) how one effect
of viscosity was to induce an element of standing wave behaviour in a shoreward
progressing wave. This phenomenon will have implications for refraction also and
it would be of considerable interest to examine the degree of ‘turning’ that can be
obtained with an eddy viscosity model and whether the frictional element of this
turning opposes or (as one might expect) reinforces that due to the shoaling.
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gratefully acknowledged by the author.
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Appendix A
This Appendix details various asymptotic forms required in the main text.
(i) The asymptotics of Kis(z) for |s| � 1, z = o(|s|1/2), are controlled in the upper

half-plane by that of I−is(z) and in the lower half-plane by that of Iis(z). The first
term of the power series expansion (Watson 1944 p. 79) in increasing powers of z is
sufficient to determine the dominant asymptotic term for large |s|. The full expansion
is

I−is(z) =

∞∑
m=0

(
1
2
z
)−is+2m

m!Γ (1 + m− is)
(A 1)

and writing s = ρeiθ, 0 6 θ 6 π, we have

−is eiϕ I−is(x) ∼ exp

{
ρ sin θ log(x/2ρ) +

1

2
log

ρ

2π
− ρ(θ − 1

2
π) cos θ + ρ sin θ

}
following the use of Stirling’s formula for the gamma function. In this expression the
argument ϕ is given by

ϕ = (θ − 1
2
π)(ρ sin θ − 1/2)− ρ cos θ ln(2ρ/ex).

It is seen that if 0 < δ 6 θ 6 π − δ < π, then |I−is(x)| = O(exp (−ρ ln ρ sin δ)), so
that on |s| = ρ,

lim
ρ→∞

∫ π−δ

θ=δ

|I−is(x) sm exp (λs)| dθ → 0, (A 2)

∀m, λ ∈ C . Consider separately the domain 0 6 θ 6 δ. Under this restriction,

|2s I−is(x) sech(πs/2)| ∼
( ρ

2π

)1/2

exp

{
ρ sin θ ln

(
ex

2ρ

)}
exp (−ρθ cos θ).

For π−δ 6 θ < π, a similar result is obtained by noting that if $ = π−θ ⇒ sin $ =
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sin θ, and (θ − 1
2
π) cos θ = ($ − π/2) cos $ . It is concluded that Jordan's lemma is

applicable to ∫
γ

I−is(x) sν sech(πs/2) ds

where γ is the usual semicircular arc in the upper half-plane and Re(ν) < 1/2. There
is a need to observe, for the purposes of using the residue theorem in § 10 to obtain
the near-field expansion, that the above result on the arc γ can be extended to the
integral ∫

γ

A−(s) I−is(κR)
cosh sα coth πs

sinh πs
ds.

To see this, note firstly that, from the result in Appendix B, A−(s) is dominated by
the two terms −2d1 sinh s(π/2 − α + iσ) and 2dJ−1 sinh s( 1

2
π − α − iσ) on each of the

two arcs 0 6 θ 6 δ and π − δ 6 θ < π. Denoting the union of the arcs by δγ, the
estimate∣∣∣∣∫

δγ

A−(s) I−is(κR)
cosh sα coth πs

sinh πs
ds

∣∣∣∣
= O

{
1

(2πρ)1/2

∫ δ

θ=0

exp [ρ(±σ + log(xe/2ρ)) sin θ dθ

}
is available, confirming that this contribution dies out like 1/(ρ3/2ln ρ) as ρ→∞. The
behaviour on γ − δγ is covered by (A2).

(ii) Far-field asymptotics of the solution integral (3.1) are normally obtained by
expanding the integrand for large |s| and inverting exactly a finite number of terms
that arise. The estimate of a tail can usually be covered by the following theorem:

Theorem. If f(s) ∈ L(0,∞), and if for some s0, |f(s)| < exp (−λs) for some λ >
0, ∀s > s0 then

F(x) ≡
∫ ∞

0

f(s)Kis(x) ds ∼ e−x(π/2x)1/2

∫ ∞
0

f(s)ds.

Proof. Select an arbitrary positive number N > s0 and denote s1 = x− x1/4, s2 =
x+ x1/4 and write

F(x) =

3∑
r=0

Ir =

∫ N

0

+

∫ s1

N

+

∫ s2

s1

+

∫ ∞
s2

f(s)Kis(x) ds.

An estimate of I0 is given by the conventional large-argument asymptotic expansion
for the Macdonald function, thus

I0 = e−x(π/2x)1/2

∫ N

0

f(s)ds+ O(e−xx−3/2).

In the regime s 6 s1 there is (Magnus, Oberhettinger & Soni pp. 139–142)

Kis(x) ∼ ( 1
2
π)1/2 (x2 − s2)−1/4 exp

{
−(x2 − s2)1/2 − s sin−1 (s/x)

}
× (1 + O(x−1)).

Note that (x2− s2)1/2 + s sin−1 (s/x) is an increasing function. Writing s = x sin θ and
denoting respectively θ1 = sin−1(s1/x), θ0 = sin−1(N/x), it follows that

|I1| 6
(πx

2

)1/2
∫ θ1

θ0

e−x(cos θ+(θ+λ) sin θ) (cos θ)1/2 dθ.
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In order adequately to estimate |I1| it is necessary further to divide this integra-
tion range so that on the left-hand interval an inequality of the type (cos θ)1/2 <
µ(θ + λ) cos θ, with µ independent of x, can be exploited which facilitates an exact
integration, whilst on the right-hand interval the required bound is obtained by the
smallness of the exponential in the integrand. Clearly, a possible point of division is
given by θ2 = sin−1 (x−1/2). Proceeding as suggested, with x > K , for some constant
K , any µ subject to µ > (1 − 1/K)−4/λ may be selected. With the obvious notation,
the estimates obtained are

|I (0)
1 | 6 µ

( π
2x

)1/2 [
e−x(cos θ+(θ+λ) sin θ)

]θ0

θ2
, |I (1)

1 | = O(x3/2e−x exp(−λx1/2))

from which

|I1| 6
1

λ

( π
2x

)1/2

e−x−λN {1 + O(x−1)}.

To estimate I2 use is made of the expansion in the so-called ‘transitional regime’

Kis(x) ∼ i√
12
Γ

(
1

3

) (x
6

)−1/3

exp

{
−πs

2
− 2πi

3

}
× {1 + o(1)}.

From this it is easy to find a constant A such that |I2| 6 Ae−πx/2 sinh (πx1/4/2) ×
{1 + o(1)}. If x >

3
√

81 then e−πx/2 sinh (πx1/4/2) < exp(−1.04x), so that |I2| =
o(exp (−1.04x)). Finally, in s > s2

Kis(x) ∼ (2π)1/2(s2 − x2)−1/4e−πs/2
{

sin [s cosh−1 (s/x) + 1
4
π − (s2 − x2)1/2] + O(x−1)

}
and there follows

|I3| 6 (2π)1/2

∫ ∞
s2

(s2 − x2)−1/4e−πs/2−λsds = o(exp(−πx/2)).

Putting the results together in the form

F(x) = e−x
( π

2x

)1/2
∫ ∝

0

f(s) ds+ RN

it is seen that

|RN | 6 |I1|+ |I2|+ |I3|+ λ−1x−1/2e−x−λN
(

1
2
π
)1/2
6
(

1
2
πx
)1/2

λ−1e−x{2e−λN + o(1)}.

Appendix B
Consider the reduction of A± to hyperbolic polynomial form. From (4.5)

A+ =
1

sinh sα

J−1∑
j=0

cj sinh s(2jα− iσ − 1
2
π). (B 1)

Denote, for convenience,

S(k) ≡ sinh skα

sinh sα
=

k∑
r=1

e(k−2r+1)αs,
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and recall, from the text, that C(s) has a zero at s = 0; the implication of this is that

J−1∑
j=0

cj = 0. (B 2)

It follows that, when (B 1) is expanded,
∑J−1

j=0 cj cosh 2jαs may be replaced by∑J−1
j=1 cj {cosh 2jαs− 1}, a result which enables (B 1) to be re-expressed in the form

A+ = 2

J−1∑
j=1

cj S(j) cosh s( 1
2
π − jα+ iσ). (B 3)

Replace S(j) cosh s( 1
2
π − jα+ iσ) by exponentials, to give

A+ =

J−1∑
j=1

cj

j∑
r=1

{
es(

1
2 π−(2r−1)α+iσ) + e−s(

1
2 π−2jα+iσ+(2r−1)α)

}
whereby, if in the second term of the inner summation, the summation variable
is changed by j − r = k − 1 then, after also changing the order of the repeated
summation,

A+ = 2

J−1∑
r=1

dr cosh s
(

1
2
π − (2r − 1)α+ iσ

)
,

where dr =
∑J−1

j=r cj .
A similar treatment for A− yields the result

A− = −2

J−1∑
r=1

dr sinh s
(

1
2
π − (2r − 1)α+ iσ

)
.

Special case

For the case N = 0, J = 4, i.e. α = π/6, there follows

φ = φ∞ +
√

3 (1− 4κ−2)e−R cos(θ+α) cos [R sin (θ + α) (1− κ2)1/2]

+e−R sin (θ+2α)
{√

3 cos [R cos (θ + 2α)(1− κ2)1/2]

+2 sinh 2σ sin [R cos (θ + 2α)(1− κ2)1/2]
}
,

where

φ∞ = eR sin θ
{√

3 cos [R cos θ (1− κ2)1/2] + 2 sinh 2σ sin [R cos θ (1− κ2)1/2]
}
.

It is easy to verify that the above potential satisfies all the conditions (2.2)–(2.6).

Appendix C
A proof is given of the lemma(
N

2

)1/2

= N sin

{
(2N + 1)π

4

}
+

N−1∑
k=1

k sin 1
2
πk(1 + 1

2N
)

cos (N − k)α

N−k∏
r=1

cot rα; α = π/4N,

which was used in § 7.
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Define first c(s) = 2m−1
∏m−1

j=0 cos α(s + j); m = 2N. Then observe that writing

x = eiθ and allowing the limit θ → 0 in the identity

xm − x−m ≡ (x− x−1)

m−1∏
j=1

(x− 2 cos 2αj + x−1)

leads to the result m = 22(m−1)
∏m−1

j=1 sin2 αj = 22m−2
∏m−1

j=1 cos2 αj , so that c(0) = m1/2.
Note also that c(s) satisfies

c(s+ 1) = −c(s) tan sα, (C 1)

a result which when differentiated leads to the further observation c′(1) = −αm1/2.
Now it is clear from expanding the definition of c(s) that a suitable alternative form

is given by

c(s) =

m∑
j=−m

pj eiαjs; pm = e
1
4

iπ(m− 1), pm−1 = 0, (C 2)

and, by premultiplying the difference equation (C 1) by e−iπjs/2m cos sα and integrating
over [0, 4m], the recurrence relation becomes

pj−1 cos
α

2
(j − 1 + m) = e−iα(m−1) pj+1 sin 1

2
α(j + 1 + m).

It follows that pm−1 = 0 ⇒ pm−3 = 0 ⇒ . . . ⇒ p1−m = 0. It also follows that pj = p̄−j
(bar denoting the complex conjugate). Next differentiate (C 2) so that

(N/2)1/2 =

N∑
j=1

Im(bj j e2iαj) (C 3)

using the alternative notation b±(N−j) = 2p±(m−2j). For the bj observe that

bN = e
1
4 iπ(2N−1),

bN−1 =
sin 1

2
α(4N)

cos 1
2
α(4N − 2)

ei(N−1)( 1
2 π−α),

bN−2 =
sin 1

2
α(4N)

cos 1
2
α(4N − 2)

sin 1
2
α(4N − 2)

cos 1
2
α(4N − 4)

ei(N−2)( 1
2 π−α),

bN−3 =
sin 1

2
α(4N)

cos 1
2
α(4N − 2)

sin 1
2
α(4N − 2)

cos 1
2
α(4N − 4)

sin 1
2
α(4N − 4)

cos 1
2
α(4N − 6)

ei(N−3)( 1
2 π−α),

so that, in general

bN−j =

∏j
r=1 cot

(
πr/4N

)
cos

(
jπ/4N

) ei(N−j)( 1
2 π−α),

which result means that (C 3) may be expressed as

(N/2)1/2 =

N∑
j=1

j sin 1
2
πj(1 + 1

2N
)

cos (π/4N)(N − j)

N−j∏
r=1

cot
( πr

4N

)
with the product taken as unity when j = N.
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Appendix D. Proof of solution
A careful examination of the asymptotics for large X of Kis(·) on the line L,

defined by s = X + iy for 0 6 y 6 1, reveals that condition C3 (see § 3) cannot be
satisfied without decomposition of A(s). The Macdonald function decays only like
Xy−1/2 exp(−πX/2) and the failure of C3 is easily noted by taking account of (4.8).
It is therefore necessary to establish the solution by a demonstration that (2.2)–(2.6)
are all satisfied by the proposed expression (4.6).

The differentiation under the integral sign, which establishes (2.2) and (2.3) is
justified by the asymptotics which, since θ < 0, implies that all integrals, for whatever
value of θ, decay exponentially (see Appendix A) and uniformly so w.r.t. θ. Details of
asymptotics of the Macdonald function are given in that Appendix. The conditions
(2.5) and (2.6) were dealt with in the text. It remains therefore to establish rigorously
the satisfaction of (2.4). To do this, consider first

φ(2)(R, θ) =

∫ ∞
0

A−(s) coth πs cosh s(θ + α)Kis(κR) ds .

A partitioning of the integrand is now required such that the dominant asymptotic
terms may be inverted exactly. This technique, albeit with slight variation, will also
prove useful in the subsequent computations. Use is made of the fact that, near the
water surface, cosh s(θ+α) may be replaced by sinh s(θ+α) in asymptotic expressions.
Thus another, if evidently more convoluted, way of expressing the asymptotics of
A−(s) cosh s(θ + α) is, from (4.8),

A−(s) cosh s(θ + α) coth πs

∼
{
cJ−1 cosh s

(
1
2
π + θ − iσ

)
+ c0 cosh s

(
1
2
π + θ + iσ

)}
≡ A∞−(s)

from which, after some manipulation, it may further be seen that,

A2 ≡ A−(s) cosh s(θ + α) coth πs− A∞−(s)

=
cosh s(θ + α)

sinh sα
coth πs

{
J−2∑
j=1

cj cosh s(2jα− 1
2
π − iσ)

}
+

1

sinh sα sinh πs

× [c0{cosh sθ cosh s(π − α) cosh s( 1
2
π + iσ)

+sinh sθ sinh sα cosh s( 1
2
π − iσ)}+ cJ−1{c.c.}],

where by c.c. is meant the complex conjugate of the terms in the previous brace. Note
that the expression for A2 is O(exp(πs/2− αs)) uniformly on L.

Write also φ(2)
∞ ≡

∫ ∞
0
A∞−(s)Kis(κR)ds, then inverting this gives the two standing

waves

φ∞
(2) ≡ 1

2
πeR sin θ

{
aJ−1e

−iR cos θ (1−κ2)1/2

+ a−J+1e
iR cos θ (1−κ2)1/2

}
and it follows trivially that Lφ∞

(2)|θ=0 = 0 where the operator L is defined by
L[φ] ≡ R−1∂φ/∂R − φ. Furthermore,

2Lφ(2)|θ=0 =

∫ ∞
−∞

sKis(κR)

R

[
A−sinh s α coth πs− cJ−1 sinh s( 1

2
π − iσ)

−c0 sinh s( 1
2
π + iσ)

]
ds

−
∫ ∞
−∞
Kis(κR)

[
A− cosh sα coth πs − cJ−1 cosh s( 1

2
π − iσ)

−c0 cosh s( 1
2
π + iσ)

]
ds,
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the differentiation under the integral sign now being justified by the asymptotics;
details of problems similar to this are fully discussed by Ehrenmark (1989). As
indicated in § 3, it is now possible to replace sKis(κR)/R in the first integral by an
expression involving Kis−1 and Kis+1, and make substitution s = s′ ± i, so that the
Macdonald function recovers the order is in all expressions. The result will be two
new integrals along Im(s′) = ±i, but these can now be deformed to the real axis
(indented respectively above and below the origin) by Cauchy’s theorem, since the
integrand now decays like exp(−2s′α) on both L and its mirror image in the imaginary
axis. Write, for convenience, a± ≡ aJ−1 ± a−J+1. The result of the above is then

4

iκ
Lφ(1) |θ=0

=

∫ ∞
−∞
Kis(κR)

{
A−(s− i) sinh (s− i)α− A−(s+ i) sinh (s+ i)α

− 2

iκ
A−(s) cosh sα} coth πs ds

−
∫ ∞
−∞
Kis(κR)

{
cJ−1[sinh (s− i)

(
1
2
π − iσ

)
− sinh (s+ i)

(
1
2
π − iσ

)
− 2

iκ
cosh s

(
1
2
π − iσ

)
]− c0[c.c.]

}
ds+ 2 sin αA−(i)K0(κR),

the last term arising from the residues at the indents. Here [c.c.] denotes the complex
conjugate of the preceding term in similar brackets. The first of the integrals vanishes
since A− satisfies construction (3.5). Observing that cosh σ = κ−1, it is easily verified
that the second integral vanishes also. Thus Lφ(1)|θ=0 = 1

2
iκ sin αA−(i)K0(κR) . It

follows that

φ = λK0(κR) +

∫ ∞
0

A−(s) coth πs cosh s(θ + α)Kis(κR) ds

is a valid solution of the problem by making the choice

λ = 1
2
iκ sin αA−(i).

The remaining (‘regular’) part of the solution integral,

φ(1)(R, θ) =

∫ ∞
0

A+(s) cosh s(θ + α)Kis(κR) ds,

may be dealt with in an identical fashion, except that there is no need for the
indentation at the origin. The rest of the development is exactly as above and is not
repeated here, in the interests of brevity. Moreover, as is well known and confirmed in
the text, a closed form is available from which the solution is also readily established.
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